

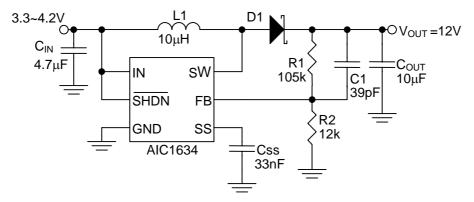
1.4MHz Current-Mode Step-Up DC/DC Converter

FEATURES

- Fixed Frequency 1.4MHz Current-Mode PWM Operation.
- · Adjustable Output Voltage up to 30V.
- Guaranteed 12V/ 150mA Output with 5V Input.
- 2.6V to 10V Input Range.
- Maximum 0.1µA Shutdown Current.
- Programmable Soft-Start.
- Tiny Inductor and Capacitors are allowed.
- Space-Saving SOT-23-6 Package.

APPLICATIONS

- LCD Bias
- LCM
- OLED Driver


DESCRIPTION

AIC1634 is a current-mode pulse-width modulation (PWM), step-up DC/DC Converter. The built-in high voltage N-channel MOSFET allows AIC1634 for step-up applications with up to 30V output voltage, as well as for Single Ended Primary Inductance Converter (SEPIC) and other low-side switching DC/DC converter.

The high switching frequency (1.4MHz) allows the use of small external components. The Soft-Start function is programmable with an external capacitor, which sets the input current ramp rate.

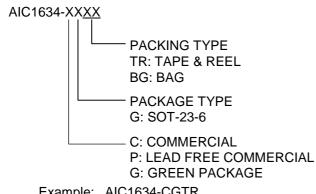
The AIC1634 is available in a space-saving SOT-23-6 package.

■ TYPICAL APPLICATION CIRCUIT

L1: SLF6025-100M1R0, TDK

D1: SS0540, PAN JIT

 C_{IN} : EDK316BJ475KD, Taiyo Yuden C_{OUT} : TMK316C106KL, Taiyo Yuden


Fig. 1 12V LCD Bias Application for Li-lon Battery

1

TEL: 886-3-5772500 FAX: 886-3-5772510 www.analog.com.tw

ORDERING INFORMATION

Example: AIC1634-CGTR

→ in SOT-23-6 Package & Tape &

Reel Packing Type

AIC1634-PGTR

→ in Lead Free SOT-23-6 Package & Tape & Reel Packing Type

SOT-23-6 Marking

Part No.	Marking
AIC1634CG	1634
AIC1634PG	1634P
AIC1634GG	1634G

■ ABSOLUTE MAXIMUM RATINGS

SW to GND	33V
FB to GND	
IN, SHDN	
SS to GND	
SW Pin RMS Current	
Operating Temperature Range	
Junction Temperature	
Storage Temperature Range	
Lead Temperature (soldering, 10 sec.)	

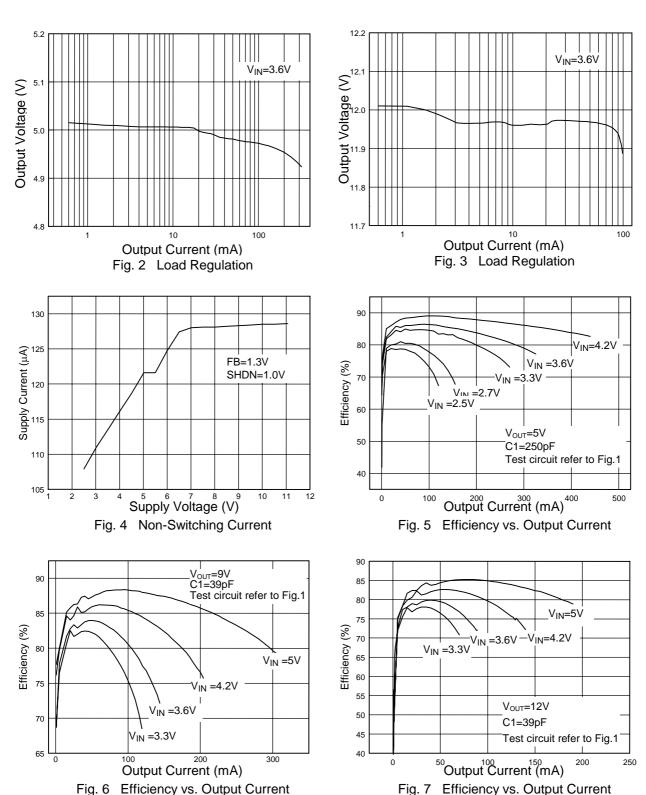
Absolute Maximum Ratings are those values beyond which the life of a device may be impaired.

■ TEST CIRCUIT

Refer to "TYPICAL APPLICATION CIRCUIT".

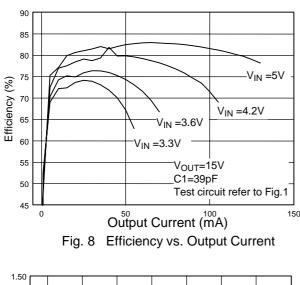
ORDER NUMBER	PIN CONFIGURATION
	FRONT VIEW
AIC1634CG&PG (SOT-23-6)	IN SS SHDN 6 5 4 1634/1634P
	1 2 3
	SW GND FB
	Note: Pin1 is determined by orienting the package marking as shown.

■ ELECTRICAL CHARACTERISTICS


($V_{IN}=V \overline{SHDN}$ =3V, SS=Open, T_A =25°C, unless otherwise specified) (Note 1)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	
Input Supply Range	V _{IN}		2.6		10	V	
Output Voltage Adjust Range	Vout				30	V	
V _{IN} Undervoltage Lockout	UVLO	V _{IN} rising, 50mV hysteresis		2.2		V	
Quiescent Current		V _{FB} = 1.3V, not switching		0.1	0.2	mA	
	I _{IN}	V _{FB} = 1.0V, switching		1	5		
Shutdown Supply Current		V SHDN = 0V		0.01	0.5	μΑ	
ERROR AMPLIFIER							
Feedback Voltage	V _{FB}		1.205	1.23	1.255	V	
FB Input Bias Current	I _{FB}	V _{FB} = 1.24V		21	80	nA	
Feedback-Voltage Line		2.6V < V _{IN} < 5.5V		0.05	0.50	%/V	
Regulation SCILLATOR							
Frequency	fosc		1	1.4	1.8	MHz	
Maximum Duty Cycle	DC		85	90		%	
POWER SWITCH		<u> </u>				, ,	
On-Resistance	R _{DS(ON)}	V _{IN} = 5V		1	1.4	Ω	
Leakage Current	` '	V _{LX} = 30V		0.1	1	μA	
Switch Current Limit	I _I L		400	500	650	mA	
SOFT-START							
Reset Switch Resistance		Guaranteed By Design			100	Ω	
Charge Current		V _{SS} = 1.2V	1.5	4	7.0	μΑ	
CONTROL INPUT							
Input Low Voltage	VIL	$V \overline{SHDN}$, $V_{IN} = 2.5V$ to 10V			0.3	V	
Input High Voltage	V _{IH}	$V \overline{SHDN}$, $V_{IN} = 2.5V$ to 10V	1.0			V	
CUDN land Out of	Laurani	VSHDN = 3V		25	50		
SHDN Input Current	ISHDN	VSHDN = 0V		0.01	0.1	μA	

Note 1: Specifications are production tested at T_A=25°C. Specifications over the -40°C to 85°C operating temperature range are assured by design, characterization and correlation with Statistical Quality Controls (SQC).



■ TYPICAL PERFORMANCE CHARACTERISTICS

TYPICAL PERFORMANCE CHARACTERISTICS (Continued)

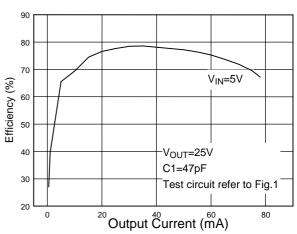


Fig. 9 Efficiency vs. Output Current

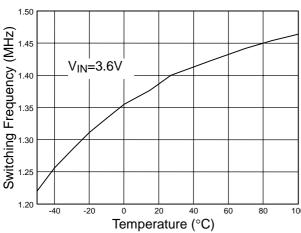


Fig. 10 Switching Frequency vs. Temperature

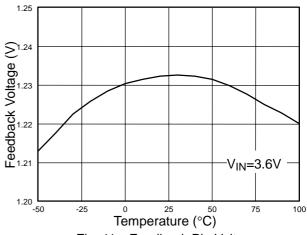


Fig. 11 Feedback Pin Voltage

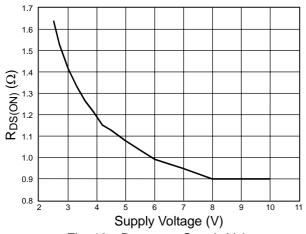


Fig. 12 R_{DS-ON} vs. Supply Voltage

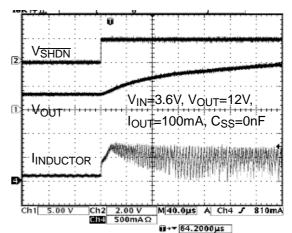


Fig. 13 Start-Up from Shutdown

TYPICAL PERFORMANCE CHARACTERISTICS (Continued)

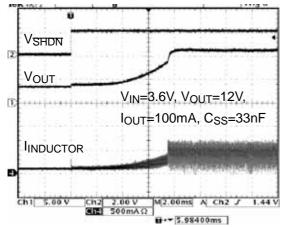


Fig. 14 Start-Up from Shutdown

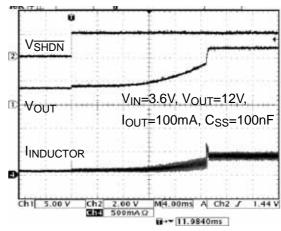


Fig. 15 Start-Up from Shutdown

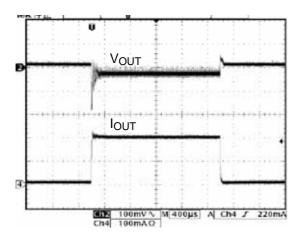


Fig. 16 Load Step Response V_{IN}=3.3V, V_{OUT}=5V, I_{LOAD}=5mA to 200mA

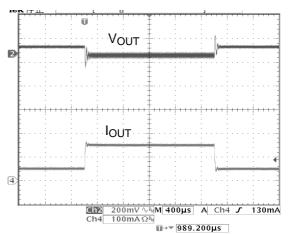
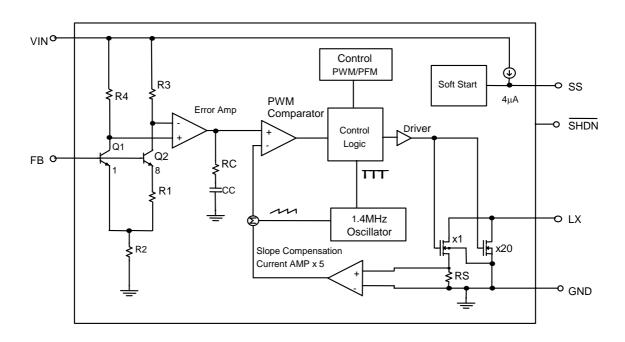



Fig. 17 Load Step Response V_{IN} =5V, V_{OUT} =12V, I_{LOAD} =50mA to 150mA

■ BLOCK DIAGRAM

■ PIN DESCRIPTIONS

PIN 1: SW - Power Switching Connection.

Connect SW to inductor and output rectifier. Keep the distance between the components as close to SW as possible.

PIN 2: GND - Ground.

PIN 3: FB - Feedback Input. Connect a resistive voltage divider from the output to FB to set the output voltage.

$$V_{OUT} = 1.23V(\frac{R_1}{R_2} + 1)$$

PIN 4: SHDN - Shutdown Input. Drive SHDN low to turn off the converter. To

automatically start the converter, connect \overline{SHDN} to IN. Do not leave \overline{SHDN} unconnected. \overline{SHDN} draws up to $50\mu A$.

PIN 5: SS - Soft-Start Input. Connect a soft-start capacitor from SS to GND in order to soft-start the converter. Leave SS open to disable the soft-start function.

PIN 6: IN - Internal Bias Voltage Input.

Connect IN to the input voltage source. Bypass IN to GND with a capacitor sitting as close to IN as possible.

APPLICATION INFORMATION

Inductor Selection

A $10\mu H$ inductor is recommended for most AIC1634 applications. Although small size and high efficiency are major concerns, the inductor should have low core losses at 1.4MHz and low DCR (copper wire resistance) to decrease power loss.

Capacitor Selection

The small size of ceramic capacitors makes them ideal for AlC1634 applications. X5R and X7R types are recommended because they retain their capacitance over wider ranges of voltage and temperature than other types, such as Y5V or Z5U. Low ESR capacitors for the output to minimize output voltage ripple. A $4.7\mu F$ input capacitor and a $10\mu F$ output capacitor are sufficient for most light load applications, yet, a

 $10\mu F$ input capacitor and a $10\mu F$ output capacitor for heavy load.

Diode Selection

Schottky diodes, with their low forward voltage drop and fast reverse recovery, are the ideal choices for AIC1634 applications. The forward voltage drop of the Schottky diode represents the conduction losses in the diode, while the diode capacitance (CT or CD) represents the switching losses. For diode selection, both forward voltage drop and diode capacitance need to be considered. Schottky diodes with higher current ratings usually have lower forward voltage drop and larger diode capacitance, which can cause significant switching losses at the 1.4MHz switching frequency of AIC1634.

APPLICATION EXAMPLES

Fig. 18 1-Cell Li-Ion Powered Driver for three White LEDs with Open-Circuit Protection

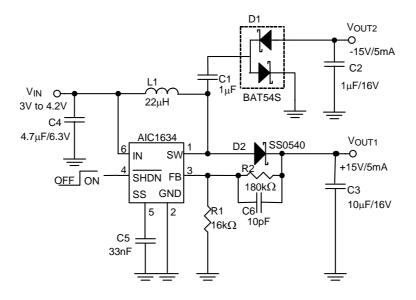
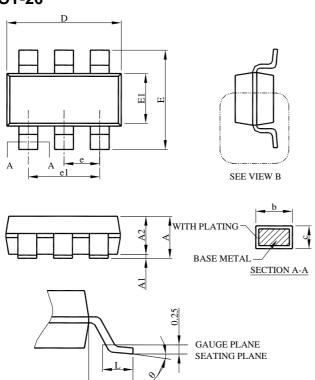



Fig. 19 1-Cell Li-lon to ±15V/5mA Dual Output Converter for LCD Bias

■ PHYSICAL DIMENSIONS (unit: mm)

SOT-26

S Y	SOT-26			
M	MILLIMETERS			
B O L	MIN.	MAX.		
Α	0.95	1.45		
A1	0.05	0.15		
A2	0.90	1.30		
b	0.30	0.50		
С	0.08	0.22		
D	2.80	3.00		
Е	2.60	3.00		
E1	1.50	1.70		
е	0.95 BSC			
e1	1.90 BSC			
L	0.30	0.60		
L1	0.60 REF			
θ	0°	8°		

Note:

1.Refer to JEDEC MO-178AB.

VIEW B

- Dimension D and E1 do not include mold flash, protrusions or gate burrs. Mold flash, protrusion or gate burrs shall not exceed 10 mil per side.
- Controlling dimension is millimeter, converted inch dimensions are not necessarily exact.

Note:

Information provided by AIC is believed to be accurate and reliable. However, we cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in an AIC product; nor for any infringement of patents or other rights of third parties that may result from its use. We reserve the right to change the circuitry and specifications without notice.

Life Support Policy: AIC does not authorize any AIC product for use in life support devices and/or systems. Life support devices or systems are devices or systems which, (I) are intended for surgical implant into the body or (ii) support or sustain life, and whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.