AIC2832

2A 16V 490kHz PWM/PSM Synchronous Step-Down Converter

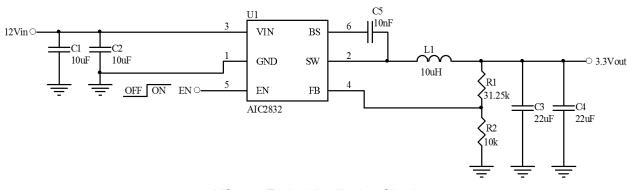
FEATURES

- 2A Continuous Output Current
- Wide 4.5V to 16V Operating Input Range
- Output Adjustable from 0.8V to 10V
- Up to 95% efficiency
- Low Rds(on) Internal Switch
- <1µA Supply Current in Shutdown Mode
- 490kHz Frequency
- Under Voltage Lockout
- Cycle by Cycle Over Current Protection
- Short Circuit Protection
- Thermal Shutdown
- Available in SOT23-6 package

APPLICATIONS

- Networking
- Set Top Box
- Industrial and Commerical Low Power Systems
- LCD Monitors and TVs
- Green Electronics/Appliances
- Ponit of Load Regulation of High-Performance DSPs

APPLICATIONS CIRCUIT

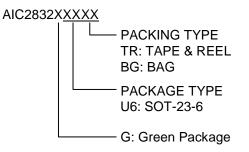

DESCRIPTION

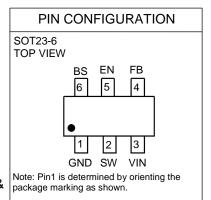
The AIC2832 is a high efficiency, monolithic synchronous step-down DC/DC converter that can deliver up to 2A output current from 4.5V to 16V input voltage.The AIC2832 current mode architecture provides fast transient response and eases loop stabilization. Low output voltage ripple and small external inductor and capacitors sizes are achieved with 490kHz switching frequency.

The AIC2832 has cycle-by-cycle current limit provides protection against shorted output, and soft start eliminates inrush current during start-up.

The AIC2832 also provides over voltage protection and thermal shutdown protection function. The low current at shutdown mode allows output disconnection, enabling easy power management in battery-power system.

This device is available in SOT23-6 package provides a very compact system solution with minimal external components and PCB area.




AIC2832 Typical Application Circuit

www.analog.com.tw

(I) aic

ORDERING INFORMATION

Example: AIC2832GU6TR

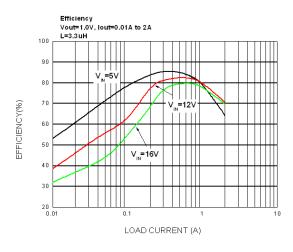
→ SOT-23-6 Green Package and Tape & Note: Pin1 is determined by orienting the package marking as shown.
Note: Pin1 is determined by orienting the package marking as shown.

Part No.	Marking
AIC2832GU6	2832G

ABSOLUTE MAXIMUM RATINGS

VIN and EN Pin Voltage	0.3V to 17V
SW Pin Voltage	1V to V _{IN} + 0.3V
BS Pin Voltage	V_{SW} – 0.3V to V_{SW} + 6V
All other pins	0.3V to 6V
Junction Temperature	150°C
Lead Temperature	
Storage Temperature Range	65°C ~ 150°C
Operating Ambient Temperature Range	40°C ~ 85°C
Thermal Resistance Junction to Case SOT23-6	115°C/W
Thermal Resistance Junction to Ambient SOT23-6	250°C/W
(Assume no Ambient Airflow, no Heatsink)	
Absolute Maximum Ratings are those values beyond which the life	of a device may be impaired.

I aic


ELECTRICAL CHARACTERISTICS

(V_{IN}=12V, V_{EN} =5V, T_A=25°C, unless otherwise specified.) (Note1)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Input Supply Voltage Range	V _{IN}		4.5		16	V
Shutdown Current		V _{EN} =0V		1	3	μA
Quiescent Current		V _{EN} =3V, V _{FB} =1V I _{OUT} = 0A, No Switching		0.5		mA
Reference Voltage	V_{REF}		0.784	0.8	0.816	V
High-Side Switch On-Resistance	R _{DS(ON)1}			200		mΩ
Low-Side Switch On-Resistance	R _{DS(ON)2}			86		mΩ
High-Side Switch Current Limit		Peak Current	3	4		А
High-Side Switch Leakage Current		V _{EN} =0V, V _{SW} =0V		0	10	μA
Oscillation Frequency	f _{osc}		416	490	564	kHz
Short Circuit Oscillation Frequency		V _{FB} =0V		200		kHz
Under Voltage Lockout Threshold	V _{UVLO}	V _{IN} Rising	3.75	4	4.45	V
UVLO Hysteresis	ΔV_{UVLO}			300		mV
EN Rising Threshold Voltage		V _{EN} Rising	1.42	1.62	1.82	V
EN Falling Threshold Voltage			1.15	1.35	1.55	V
Maximum Duty Cycle	D _{MAX}	V _{FB} =0.6V		90		%
Minimum On Time	T _{ON}			100		ns
Soft Start Period	T _{SS}			1		ms
Thermal Shutdown Temperature	T _{SD}			150		°C
Thermal Shutdown Hysteresis				25		°C

Note 1: Specifications are production tested at T_A=25°C. Specifications over the -40°C to 85°C operating temperature range are assured by design, characterization and correlation with Statistical Quality Controls (SQC).

TYPICAL PERFORMANCE CHARACTERISTICS

) aic

Fig. 1 Efficiency vs. Load Current

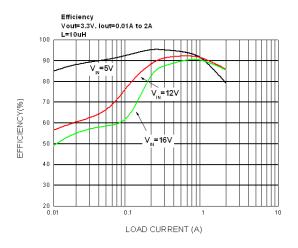


Fig. 3 Efficiency vs. Load Current

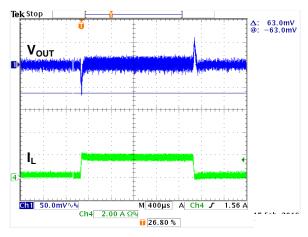


Fig. 5 $V_{\text{IN}} {=} 12 V, \, V_{\text{OUT}} {=} 1.8 V, \, I_{\text{OUT}} {=} 0.2 A \text{ to } 1.8 A$

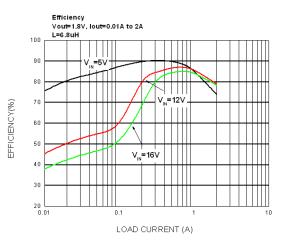


Fig. 2 Efficiency vs. Load Current

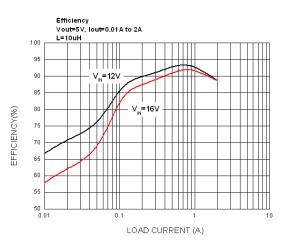
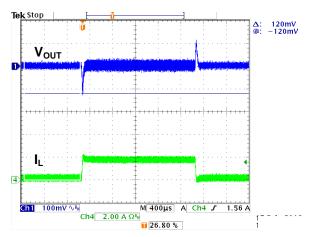
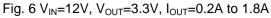




Fig. 4 Efficiency vs. Load Current

<u>(I)</u> aic

TYPICAL PERFORMANCE CHARACTERISTICS (Continued)

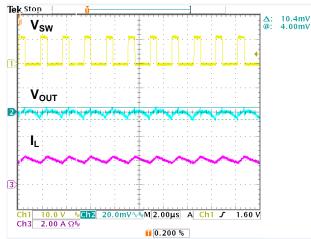


Fig. 7 Output Ripple at V_IN=12V, V_OUT=3.3V, I_OUT=2A

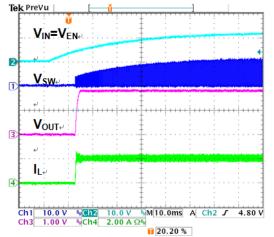
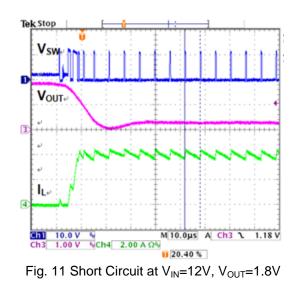



Fig. 9 Power On at $V_{IN}=12V$, $V_{OUT}=1.8V$, $I_{OUT}=2A$

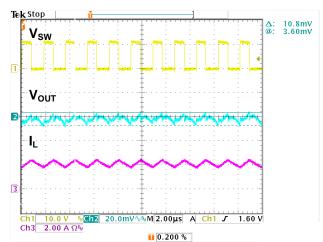
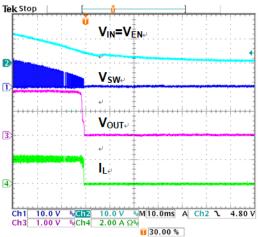
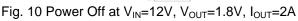




Fig. 8 Output Ripple at V_{IN} =12V, V_{OUT} =5V, I_{OUT} =2A

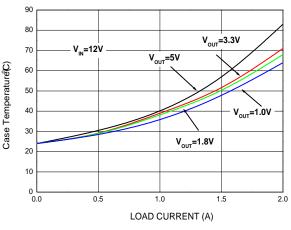
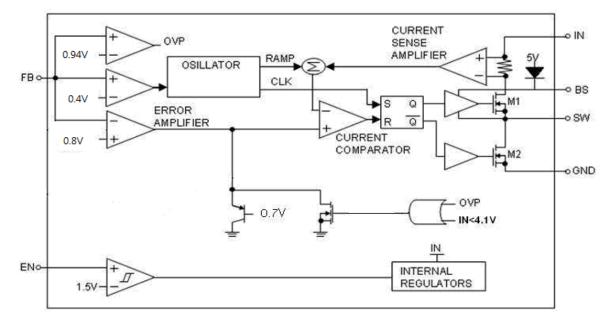



Fig. 12 Case Temperature vs. Load Current

BLOCK DIAGRAM

Functional Block Diagram of AIC2832

PIN DESCRIPTIONS

Pin No.	Pin Name	Pin Function
1	GND	Ground.
2	SW	Power Switching Output. SW is the switching node that supplies power to the output. Connect the output LC filter from switch to the output load. Note that a capacitor is required from SW to BS to power the high-side switch.
3	VIN	Power Input. VIN supplies power to the IC, as well as the step-down converter switches.Bypass VIN to GND with a suitabley large capacitor to eliminate noise on the input to the IC.
4	FB	Feedback Input. FB senses the output voltage to regulate that voltage. Drive feedback with a resistive voltage divider from the output voltage.
5	EN	Enable Input. EN is a digital input that turns the regulator on or off. Drive EN high to turn on the regulator. Drive it low to turn it off.
6	BS	High Side Gate Drive Boost Input. BS supplies the drive for the high-side N- Channel MOSFET switch. Connect a 10nF or greater capaitor from SW to BS to power the high-side switch.

(I) aic

APPLICATION INFORMATION

The AIC2832 is a synchronous high voltage buck converter that can support the input voltage range from 4.5V to 16V and the output current can be up to 2A.

Setting the Output Voltage

The output voltage is set using a resistive voltage divider connected from the output voltage to FB. The voltage divider divides the output voltage down to the feedback voltage by the ratio:

$$V_{FB} = V_{OUT} \frac{R2}{R1 + R2}$$

Thus the output voltage is:

$$V_{OUT} = V_{REF} \times \frac{R1 + R2}{R2}$$

For example, for a 3.3V output voltage and V_{REF} =0.8V, R2 is 10k Ω , and R1 is 31.25k Ω .

Inductor

The inductor selection depends on the current ripple of inductor, the input voltage and the output voltage.

$$L \geq \frac{V_{\text{OUT}}}{f_{\text{OSC}} \cdot \Delta I_{\text{L}}} \left(1 - \frac{V_{\text{OUT}}}{V_{\text{IN}}}\right)$$

Accepting a large current ripple of inductor allows the use of a smaller inductance. However, higher current ripple of inductor can cause higher output ripple voltage and large core loss. By setting an acceptable current ripple of inductor, a suitable inductance can be obtained from above equation.

In addition, it is important to ensure the inductor saturation current exceeds the peak value of inductor current in application to prevent core saturation. The peak value of inductor current can be calculated according to the following equation.

$$I_{\text{PEAK}} = I_{\text{OUT}(\text{max})} + \frac{V_{\text{OUT}}}{2 \times f_{\text{OSC}} \cdot L} \left(1 - \frac{V_{\text{OUT}}}{V_{\text{IN}}}\right)$$

Input Capacitor and Output Capacitor

To prevent the high input voltage ripple and noise resulted from high frequency switching, the use of low ESR ceramic capacitor for the maximum RMS current is recommended. The approximated RMS current of the input capacitor can be calculated according to the following equation.

$$I_{CINRMS} \approx \sqrt{I_{OUT(MAX)}^2 \times \frac{V_{OUT} \left(V_{IN} - V_{OUT}\right)}{V_{IN}^2} + \frac{\Delta I_L^2}{12}}$$

The selection of output capacitor depends on the required output voltage ripple. The output voltage ripple can be expressed as:

$$\Delta V_{OUT} = \frac{\Delta I_{L}}{8 \times f_{OSC} \cdot C_{OUT}} + ESR \cdot \Delta I_{L}$$

For lower output voltage ripple, the use of low ESR ceramic capacitor is recommended. The tantalum capacitor can also be used well, but its ESR is larger than that of ceramic capacitor.

When choosing the input and output ceramic capacitors, X5R and X7R types are recommended because they retain their capacitance over wider ranges of voltage and temperature than other types.

Short Circuit Protection

While the output is shorted to ground, the switching frequency of AIC2832 will be reduced to one third of the normal switching frequency. This lower switching frequency ensures the inductor current has more time to discharge, thereby preventing inductor current runaway. The switching frequency will automatically return to its designed value while short circuit condition is released.

Over Current Protection

The AIC2832 has a cycle-by-cycle current limit to protect the internal power switches. The cycle-bycycle current limit protection directly limits inductor peak current. While the current limitation function is activated, the duty cycle will be reduced to limit the output power to protect the internal power switches.

Over Temperature Protection

The AIC2832 implements an internal over temperature protection. When junction temperature exceeds the thermal shutdown threshold temperature, the regulator will be shutdown. And the hysteretic of the over temperature protection is 25°C (typ).

External Bootstrap Diode

When the output voltage is 3.3V or the duty ratio is higher than 65%, an external bootstrap diode between the external BS voltage and the BS pin is recommended to be used for efficiency or load regulation improvement. The external BS voltage must be lower than 5.5V. The external bootstrap diode can be the low cost 1N4148.

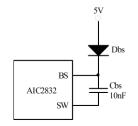


Fig. 13 Optional External Bootstrap Diode

Layout Consideration

In order to ensure a proper operation of AIC2832, the following points should be managed comprehensively.

- The input capacitor and V_{IN} should be placed as close as possible to each other to reduce the input voltage ripple and noise.
- 2. The output loop, which is consisted of the induc-

tor, the internal power switch and the output capacitor, should be kept as small as possible.

- 3. The routes with large current should be kept short and wide.
- 4. Logically the large current on the converter should flow at the same direction.
- In order to prevent the effect from noise, the IC's GND pin should be placed close to the ground of the input bypass capacitor.
- The FB pin should be connected to the feedback resistors directly and the route should be away from the noise sources.

APPLICATION EXAMPLES

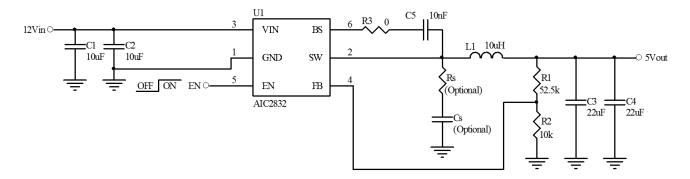
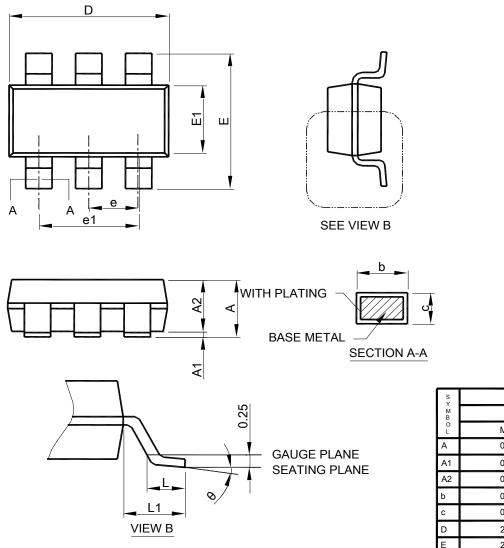



Fig. 14 AIC2832 Application Circuit for V_{OUT} =5V

PHYSICAL DIMENSIONS

• SOT23-6

Note : 1. Refer to JEDEC MO-178AB.

- 2. Dimension "D" does not include mold flash, protrusions or gate burrs. Mold flash, protrusion or gate burrs shall not exceed 10 mil per side.
- 3. Dimension "E1" does not include inter-lead flash or protrusions.
- 4. Controlling dimension is millimeter, converted inch dimensions are not necessarily exact.

Y				
M B O L	MILLIMETERS			
0 L	MIN.	MAX.		
А	0.95	1.45		
A1	0.00	0.15		
A2	0.90	1.30		
b	0.30	0.50		
С	0.08	0.22		
D	2.80	3.00		
E	2.60	3.00		
E1	1.50	1.70		
е	0.95 BSC			
e1	1.90 BSC			
L	0.30	0.60		
L1	0.60 REF			
θ	٥°	8°		

SOT23-6

Note:

Information provided by AIC is believed to be accurate and reliable. However, we cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in an AIC product; nor for any infringement of patents or other rights of third parties that may result from its use. We reserve the right to change the circuitry and specifications without notice.

Life Support Policy: AIC does not authorize any AIC product for use in life support devices and/or systems. Life support devices or systems are devices or systems which, (I) are intended for surgical implant into the body or (ii) support or sustain life, and whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.